Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.619
Filtrar
1.
Methods Mol Biol ; 2788: 287-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656521

RESUMO

CRISPR/Cas9 stands as a revolutionary and versatile gene editing technology. At its core, the Cas9 DNA endonuclease is guided with precision by a specifically designed single-guide RNA (gRNA). This guidance system facilitates the introduction of double-stranded breaks (DSBs) within the DNA. Subsequent imprecise repairs, mainly through the non-homologous end-joining (NHEJ) pathway, yield insertions or deletions, resulting in frameshift mutations. These mutations are instrumental in achieving the successful knockout of the target gene. In this chapter, we describe all necessary steps to create and design a gRNA for a gene knockout to a target gene before to transfer it to a target plant.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , RNA Guia de Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes/métodos , Edição de Genes/métodos , Simulação por Computador , Reparo do DNA por Junção de Extremidades/genética
2.
J Pharm Biomed Anal ; 245: 116160, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38663256

RESUMO

Technical advances in the field of quality analysis allow an increasingly deeper look into the impurity profile of drugs. The ability to detect unexpected impurities in addition to known impurities ensures the supply of high-quality drugs and can prevent recalls due to the detection of harmful unexpected impurities, as has happened recently with the N-nitrosamine and azido impurities in losartan (LOS) drug products. In the present study, the LC-MS/HRMS approach described by Backer et al. was applied to an even more complex system, being the investigation of 35 LOS drug products and combination preparations purchased in 2018 and 2022 in German pharmacies. The film-coated tablets were analysed by means of four LC-MS/HRMS method variants. For the separation a Zorbax RR StableBond C18 column (3.0 ×100 mm, particle size of 3.5 µm, pore size of 80 Å), a gradient elution and for mass spectrometric detection a qTOF mass spectrometer with electrospray ionization in positive and negative mode was used. An information-dependent acquisition method was applied for the acquisition of high-resolution mass spectrometry data. The combination of an untargeted and a targeted screening approach revealed the finding of eight impurities in total. Beside the five LOS related compounds, LOS impurity F, J, K, L, M, and related compound D from amlodipine besilate, LOS azide and an unknown derivative thereof were detected. Identification and structure elucidation, respectively, were successfully performed using in silico fragmentation. Differences in the impurity profiles of drug products from 2018 and 2022 could be observed. This study shows that broad screening approaches like this are applicable to the analysis of drug products and can be an important enhancement of the quality assurance of medicinal products.

3.
Brain Behav Immun ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663773

RESUMO

Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans. Single-nuclei transcriptomics of the mouse cortex reveals that dietary obesity promotes an array of neuron-adverse transcriptional dysregulations, which are mediated by an interplay of excitatory neurons and glial cells, and which involve microglial activation and lowered neuronal capacity for neuritogenesis and maintenance of membrane potential. The transcriptional dysregulations of microglia more than of other cell types are like those in AD, as assessed with single-nuclei cortical transcriptomics in a mouse model of AD and two sets of human donors with the disease. Serial two-photon tomography of microglia demonstrates microgliosis throughout the mouse cortex. The spatial pattern of adiposity-cortical volume associations in human cohorts interrogated together with in silico bulk and single-nucleus transcriptomic data from the human cortex implicated microglia (along with other glial cells and subtypes of excitatory neurons), and it correlated positively with the spatial profile of cortical atrophy in patients with mild cognitive impairment and AD. Thus, multi-cell neuron-adverse dysregulations likely contribute to the loss of cortical tissue in obesity. The dysregulations of microglia may be pivotal to the obesity-related risk of AD at a population level.

4.
Discov Med ; 36(183): 739-752, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665023

RESUMO

BACKGROUND: Eugenol exhibits broad-spectrum antibacterial and anti-inflammatory properties. However, cytotoxicity at high concentrations limits the full utilization of eugenol-based drug complexes. Formulations of multidrug-loaded eugenol-based nanoemulsions have reduced cytotoxicity; however, it remains crucial to understand how these eugenol complexes interact with primary human carrier proteins to design and develop therapeutic alternatives. Consequently, this study primarily aims to investigate the impact on Human Serum Albumin (HSA) when it interacts with eugenol-based complexes loaded with first-line anti-tuberculosis drugs. METHODS: This study used various spectroscopic such as UV-visible spectroscopy, Fluorescence spectroscopy, Fourier-transform infrared spectroscopy and computational methods such as molecular docking and 100 ns molecular simulation to understand the impact of eugenol-based first-line anti-tuberculosis drug-loaded nanoemulsions on HSA structure. RESULTS: The binding of the HSA protein and eugenol-based complexes was studied using UV-visible spectroscopic analysis. Minor changes in the fluorophores of the protein further confirmed binding upon interaction with the complexes. The Fourier-transform infrared spectra showed no significant changes in protein structure upon interaction with eugenol-based multidrug-loaded nanoemulsions, suggesting that this complex is safe for internal administration. Unlike eugenol or first-line anti-tuberculosis alone, molecular docking revealed the strength of the binding interactions between the complexes and the protein through hydrogen bonds. The docked complexes were subjected to a 100 ns molecular dynamics simulation, which strongly supported the conclusion that the structure and stability of the protein were not compromised by the interaction. CONCLUSIONS: From the results we could comprehend that the eugenol (EUG)-drug complex showed greater stability in HSA protein structure when compared to HSA interacting with isoniazid (INH), rifampicin (RIF), pyrazinamide (PYR), or ethambutol (ETH) alone or with EUG alone. Thus, inferring the potential of EUG-based drug-loaded formulations for a safer and efficient therapeutic use.


Assuntos
Antituberculosos , Emulsões , Eugenol , Simulação de Acoplamento Molecular , Albumina Sérica Humana , Eugenol/química , Eugenol/farmacologia , Humanos , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Emulsões/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ligação Proteica
5.
Heliyon ; 10(8): e29490, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655301

RESUMO

Diversity and homeostasis of gut bacterial composition is highly associated with the pathogenesis of insulin dysfunction and type 1 diabetes melittus (T1D), hence emerged in parallel with the activation of autoimmunity. We aimed to study the bioactive potential of essential oil from Zanthoxylum myriacanthum var. pubescens Huang (Maqian) through computational approaches. Twelve chemical constituents derived from Maqian essential oil were docked with selected proteins (i.e., 3pig, 1kho, 7dmq, 4m4d, 2z65, 4glp, and 3fxi) in which are involved in gut microbiota modulation in T1D. Subsequently, the prediction of bioavailability properties of the small molecules were evaluated. Among all chemical constituents, the post-docking interaction analysis demonstrated that α-phellandrene exhibits the strongest binding affinity and induces gut microbiota modulation with ß-fructofuranosidase from Bifidobacterium longum. The current result revealed the potential of 3-Carene and α-Pinene in inducing specific changes in gut microbiota downregulating Clostridium perfringens and quenching Leptotrichia shahii respectively. ß-Pinene possess exceptionally strong binding affinity that effectively disrupt the interaction between lipopolysaccharide and its cognate receptors, while α-Phellandrene was exhibited the uppermost binding affinity with TLR4/MD2 and could likely target TLR4 stimulating lipopolysaccharide. Our results are the first to report on the gut microbiota modulation effects of α-Phellandrene and ß-Phellandrene via actions on LPS binding to CD14 and the TLR4 co-receptor signaling. In conclusion, our findings based on computational approaches, small molecules from Maqian present as promising agents which could regulate inflammatory response and modulate gut microbiota in type 1 diabetes mellitus.

6.
Heliyon ; 10(8): e29390, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655368

RESUMO

In this study, a novel series of pyridine-based thiadiazole derivatives (NTD1-NTD5) were synthesized as prospective anti-inflammatory agents by combining substituted carboxylic acid derivatives of 5-substituted-2-amino-1,3,4-thiadiazole with nicotinoyl isothiocyanate in the presence of acetone. The newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectrometry. First, the compounds underwent rigorous in vivo testing for acute toxicity and anti-inflammatory activity and the results revealed that three compounds-NTD1, NTD2, and NTD3, displayed no acute toxicity and significant anti-inflammatory activity, surpassing the efficacy of the standard drug, diclofenac. Notably, NTD3, which featured benzoic acid substitution, emerged as the most potent anti-inflammatory agent among the screened compounds. To further validate these findings, an in silico docking study was carried out against COX-2 bound to diclofenac (PDB ID: 1pxx). The computational analysis demonstrated that NTD2, and NTD3, exhibited substantial binding affinity, with the lowest binding energies (-8.5 and -8.4, kcal/mol) compared to diclofenac (-8.4 kcal/mol). This alignment between in vivo and in silico data supported the robust anti-inflammatory potential of these derivatives. Moreover, molecular dynamics simulations were conducted, extending over 100 ns, to examine the dynamic interactions between the ligands and the target protein. The results solidified NTD3's position as a leading candidate, showing potent inhibitory activity through strong and sustained interactions, including stable hydrogen bond formations. This was further confirmed by RMSD values of 2-2.5 Å and 2-3Ǻ, reinforcing NTD3's potential as a useful anti-inflammatory agent. The drug likeness analysis of NTD3 through SwissADME indicated that most of the predicted parameters including Lipinski rule were within acceptable limits. While these findings are promising, further research is necessary to elucidate the precise relationships between the chemical structures and their activity, as well as to understand the mechanisms underlying their pharmacological effects. This study lays the foundation for the development of novel anti-inflammatory therapeutics, potentially offering improved efficacy and safety profiles.

7.
MethodsX ; 12: 102691, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660042

RESUMO

In this study, we synthesized novel α,ß-unsaturated 2-cyanoacetamide derivatives (1-5) using microwave-assisted Knoevenagel condensation. Characterization of these compounds was carried out using FTIR and 1H NMR spectroscopy. We then evaluated their in vitro antibacterial activity against both gram-positive and gram-negative pathogenic bacteria. Additionally, we employed in silico methods, including ADMET prediction and density functional theory (DFT) calculations of molecular orbital properties, to investigate these cyanoacetamide derivatives (1-5). Molecular docking was used to assess the binding interactions of these derivatives (1-5) with seven target proteins (5MM8, 4NZZ, 7FEQ, 5NIJ, ITM2, 6SE1, and 5GVZ) and compared them to the reference standard tyrphostin AG99. Notably, derivative 5 exhibited the most favorable binding affinity, with a binding energy of -7.7 kcal mol-1 when interacting with the staphylococcus aureus (PDB:5MM8), while also meeting all drug-likeness criteria. Additionally, molecular dynamics simulations were carried out to evaluate the stability of the interaction between the protein and ligand, utilizing parameters such as Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), Radius of Gyration (Rg), and Principal Component Analysis (PCA). A 50 nanosecond molecular dynamics (MD) simulation was performed to investigate stability further, incorporating RMSD and RMSF analyses on compound 5 within the active binding site of the modeled protein across different temperatures (300, 305, 310, and 320 K). Among these temperatures, compound 5 exhibited an RMSD value ranging from approximately 0.2 to 0.3 nm at 310 K (body temperature) with the 5MM8 target, which differed from the other temperature conditions. The in silico results suggest that compound 5 maintained significant conformational stability throughout the 50 ns simulation period. It is consistent with its low docking energy and in vitro findings concerning α,ß-unsaturated cyanoacetamides. Key insights from this study include:•The creation of innovative α,ß-unsaturated 2-cyanoacetamide derivatives (1-5) employing cost-effective, licensed, versatile, and efficient software for both in silico and in vitro assessment of antibacterial activity.•Utilization of FTIR and NMR techniques for characterizing compounds 1-5.

8.
Heliyon ; 10(8): e29520, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660278

RESUMO

This exploratory study aims to identify the volatile compounds in PC-Eo (Petroselinum crispum L. essential oil) and evaluate its antioxidant and antimicrobial properties in vitro. Molecular docking, drug-likeness prediction, and pharmacokinetics (absorption, distribution, metabolism, excretion, and toxicity-ADMET) were among the in silico simulations that were used to explain the biological properties observed in vitro. For PC-Eo's chemical screening, gas chromatography-mass spectrophotometry (GC-MS) was employed. The antioxidant activity of PC-Eo was evaluated using five in vitro complementary techniques, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, ß-Carotene bleaching test (BCBT), reducing power (RP), and phosphomolybdenum assay (TAC). GC-MS analysis revealed that the primary components of PC-Eo are apiol (49.05 %), Myristicin (21.01 %), and 1-allyl-2,3,4,5-tetramethoxybenzene (13.14 %). The results of the in vitro antioxidant assays indicate that PC-Eo exhibits a superior antioxidant profile. The in vitro antimicrobial activity of PC-Eo was assessed against five strains, including 2 g-positive bacteria, 2 g-negative bacteria, and one fungal strain (Candida albicans). The disc-diffusion assay revealed significant antibacterial and antifungal activities against all strains, with zones of inhibition exceeding 15 mm. The microdilution test highlighted the lowest MIC and MBC values with gram-positive bacteria, ranging from 0.25 to 0.5 % v/v for MIC and 0.5-1.0 % v/v for MBC. For the fungal strain, MIC was recorded at 1.25 % and MFC at 2.5 % v/v. PC-Eo demonstrates bactericidal and fungicidal activity based on the MBC/MIC and MFC/MIC ratios. According to the ADMET study, the primary PC-Eo compounds have advantageous pharmacokinetic characteristics. These findings provide empirical support for the traditional uses of this plant and indicate its possible use as a natural remedy.

9.
Bioinform Biol Insights ; 18: 11779322241234767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660393

RESUMO

Enzymatic reactions can be modulated by the incorporation of organic solvents, leading to alterations in enzyme stability, activity, and reaction rates. These solvents create a favorable microenvironment that enables hydrophobic reactions, facilities enzyme-substrate complex formation, and reduces undesirable water-dependent side reactions. However, it is crucial to understand the impact of organic solvents on enzymatic activity, as they can also induce enzyme inactivation. In this study, the enzymatic performance of Aspergillus oryzae α-amylase (Taka-amylase) in various organic solvents both experimentally and computationally was investigated. The results demonstrated that ethanol and ether sustain Taka-amylase activity up to 20% to 25% of the organic solvents, with ether providing twice the stability of ethanol. Molecular dynamics simulations further revealed that Taka-amylase has a more stable structure in ether and ethanol relative to other organic solvents. In addition, the analysis showed that the loop located near the active site in the AB-domain is a vulnerable site for enzyme destabilization when exposed to organic solvents. The ability of Taka-amylase to preserve the secondary loop structure in ether and ethanol contributed to the enzyme's activity. In addition, the solvent accessibility surface area of Taka-amylase is distributed throughout all enzyme structures, thereby contributing to the instability of Taka-amylase in the presence of most organic solvents.

10.
Cureus ; 16(3): e56664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646326

RESUMO

Background A putative tumor suppressor gene called HIC1 (hypermethylated in cancer) is situated at 17p13.3, a locus where the allelic loss occurs often in human malignancies, including breast cancer. Hypermethylated in cancer 1 protein is a protein that in humans is encoded by the HIC1 gene and it's a Homo sapiens (Human). This gene functions as a growth regulatory and tumor repressor gene. The molecular function of HIC1 gene includes DNA-binding transcription factor activity, sequence-specific DNA binding, DNA binding, histone deacetylase binding, protein binding, metal ion binding, nucleic acid binding, DNA-binding transcription repressor activity, RNA polymerase II-specific, DNA-binding transcription factor activity, RNA polymerase II-specific. The biological process of HIC1 gene includes multicellular organism development, negative regulation of Wnt signaling pathway, positive regulation of DNA damage response, signal transduction by p53 class mediator regulation of transcription, DNA-templated, negative regulation of transcription by RNA polymerase II, Wnt signaling pathway, transcription, DNA-templated, intrinsic apoptotic signaling pathway in response to DNA damage, cellular response to DNA damage stimulus. The study aimed to predict the stability and structure of the protein that will arise from single nucleotide polymorphisms (SNPs) in the human HIC1 gene. Methodology To investigate the possible negative effects associated with these SNPs, bioinformatic analysis is typically essential. The following tools were employed for forecasting harmful SNPs: scale-invariant feature transform (SIFT), Protein Analysis Through Evolutionary Relationships (PANTHER), nonsynonymous SNP by Protein Variation Effect Analyzer (PROVEAN), and nonsynonymous SNP by Single Nucleotide Polymorphism Annotation Platform (SNAP). Results The present study identified a total of 36 SNPs using the SIFT approach, which were shown to have functional significance. Twenty-six were determined to be tolerable, whereas 10 were shown to be detrimental. Out of 20 SNPs, seven (P370A, P646S, R654P, A476T, S400S, D666N, D7V) SNPs were predicted as "Possibly damaging" and seven (L9F, G468R, G490R, L482R, S12W, G489D, S12P) were identified as "probably benign", and six (R725G, G620S, A56V, E463D, D394N, L338V) were identified as "probably damaging" according to the predictions made by PANTHER tools. The majority of the pixels on the strip were red, indicating that the gene changes may have dangerous consequences. These results highlight the need for more research to fully comprehend how these mutations affect the hic1 protein's function, which is essential for the emergence of different types of cancer. Conclusion The current research has provided us with essential information about how SNPs might be used as a diagnostic marker for cancer, given that SNPs may be candidates for cellular changes caused by mutations linked to cancer.

11.
BMC Complement Med Ther ; 24(1): 167, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649994

RESUMO

Tanacetum falconeri is a significant flowering plant that possesses cytotoxic, insecticidal, antibacterial, and phytotoxic properties. Its chemodiversity and bioactivities, however, have not been thoroughly investigated. In this work, several extracts from various parts of T. falconeri were assessed for their chemical profile, antioxidant activity, and potential for enzyme inhibition. The total phenolic contents of T. falconeri varied from 40.28 ± 0.47 mg GAE/g to 11.92 ± 0.22 mg GAE/g in various extracts, while flavonoid contents were found highest in TFFM (36.79 ± 0.36 mg QE/g extract) and lowest (11.08 ± 0.22 mg QE/g extract) in TFSC (chloroform extract of stem) in similar pattern as found in total phenolic contents. Highest DPPH inhibition was observed for TFFC (49.58 ± 0.11 mg TE/g extract) and TFSM (46.33 ± 0.10 mg TE/g extract), whereas, TFSM was also potentially active against (98.95 ± 0.57 mg TE/g) ABTS radical. In addition, TFSM was also most active in metal reducing assays: CUPRAC (151.76 ± 1.59 mg TE/g extract) and FRAP (101.30 ± 0.32 mg TE/g extract). In phosphomolybdenum assay, the highest activity was found for TFFE (1.71 ± 0.03 mg TE/g extract), TFSM (1.64 ± 0.035 mg TE/g extract), TFSH (1.60 ± 0.033 mg TE/g extract) and TFFH (1.58 ± 0.08 mg TE/g extract), while highest metal chelating activity was recorded for TFSH (25.93 ± 0.79 mg EDTAE/g extract), TFSE (22.90 ± 1.12 mg EDTAE/g extract) and TFSC (19.31 ± 0.50 mg EDTAE/g extract). In biological screening, all extracts had stronger inhibitory capacity against AChE while in case of BChE the chloroform extract of flower (TFFC) and stem (TFSC) showed the highest activities with inhibitory values of 2.57 ± 0.24 and 2.10 ± 0.18 respectively. Similarly, TFFC and TFSC had stronger inhibitory capacity (1.09 ± 0.015 and 1.08 ± 0.002 mmol ACAE/g extract) against α-Amylase and (0.50 ± 0.02 and 0.55 ± 0.02 mmol ACAE/g extract) α-Glucosidase. UHPLC-MS study of methanolic extract revealed the presence of 133 components including sterols, triterpenes, flavonoids, alkaloids, and coumarins. The total phenolic contents were substantially linked with all antioxidant assays in multivariate analysis. These findings were validated by docking investigations, which revealed that the selected compounds exhibited high binding free energy with the enzymes tested. Finally, it was found that T. falconeri is a viable industrial crop with potential use in the production of functional goods and nutraceuticals.

12.
Toxics ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38668471

RESUMO

Pesticides must not pose unacceptable risks to human health, so risk assessments are conducted before products are authorised. Dermal exposure is often the main route of intake, so estimating realistic and trustworthy dermal absorption values is crucial for risk assessment. Although there are agreed test guidelines for in vitro dermal absorption studies, not every product is tested due to cost reasons. The present dataset consists of 945 individual in vitro experiments on the dermal absorption of human skin with 179 active substances of pesticides in 353 different mixtures, including concentrates and dilutions. The dataset was evaluated to identify the possible impacts of experimental conditions and physico-chemical properties on dermal absorption. The dataset was also analysed to assess the appropriateness of the pro rata correction for untested dilutions, and the set concentration cut-off to decide on the dilution status for choosing a default value on dermal absorption. The study found that the implementation of specific guidelines improved the harmonisation of study conduct, with support for approaches such as pro rata correction and default values. Further analysis of the specific co-formulants may identify influencing factors that may be more important than the experimental variables.

13.
Heliyon ; 10(7): e28408, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560111

RESUMO

The probiotic potential of Lactiplantibacillus pentosus CF-6HA isolated from traditionally fermented Aloreña table olives was analyzed in vitro and in silico. Results obtained suggested that this strain can be catalogued as "talented" bacterium exhibiting bacteriocin production with antimicrobial activity against human/animal and plant pathogens, such as Pseudomonas syringae and Verticillium dahliae. The robustness, safety and probiotic potential of L. pentosus CF-6HA was confirmed by in silico analysis. In addition, a plethora of coding genes for defense and adaptability to different life styles besides functional properties were identified. In this sense, defense mechanisms of L. pentosus CF-6HA consist of 17 ISI elements, 98 transposases and 13 temperate phage regions as well as a CRISPR (clustered regularly interspaced short palindromic repeats)/cas system. Moreover, the functionality of this strain was confirmed by the presence of genes coding for secondary metabolites, exopolysaccharides and other bioactive molecules. Finally, we demonstrated the ability of L. pentosus CF-6HA to biotransform selenite to nanoparticles (SeNPs) highlighting its potential role in selenium bioremediation to be exploited in foods, agriculture and the environment; but also for the bio-enrichment of fermented foods with selenium.

14.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141015, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615986

RESUMO

The bifunctional enzyme, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) is involved in catalyzing penultimate and final steps of purine de novo biosynthetic pathway crucial for the survival of organisms. The present study reports the characterization of ATIC from Candidatus Liberibacer asiaticus (CLasATIC) along with the identification of potential inhibitor molecules and evaluation of cell proliferative activity. CLasATIC showed both the AICAR Transformylase (AICAR TFase) activity for substrates, 10-f-THF (Km, 146.6 µM and Vmax, 0.95 µmol/min/mg) and AICAR (Km, 34.81 µM and Vmax, 0.56 µmol/min/mg) and IMP cyclohydrolase (IMPCHase) activitiy (Km, 1.81 µM and Vmax, 2.87 µmol/min/mg). The optimum pH and temperature were also identified for the enzyme activity. In-silico study has been conducted to identify potential inhibitor molecules through virtual screening and MD simulations. Out of many compounds, HNBSA, diosbulbin A and lepidine D emerged as lead compounds, exhibiting higher binding energy and stability for CLasATIC than AICAR. ITC study reports higher binding affinities for HNBSA and diosbulbin A (Kd, 12.3 µM and 34.2 µM, respectively) compared to AICAR (Kd, 83.4 µM). Likewise, DSC studies showed enhanced thermal stability for CLasATIC in the presence of inhibitors. CD and Fluorescence studies revealed significant conformational changes in CLasATIC upon binding of the inhibitors. CLasATIC demonstrated potent cell proliferative, wound healing and ROS scavenging properties evaluated by cell-based bioassays using CHO cells. This study highlights CLasATIC as a promising drug target with potential inhibitors for managing CLas and its unique cell protective, wound-healing properties for future biotechnological applications.

15.
Toxicon ; 243: 107732, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642905

RESUMO

Catuneragam nilotica has been used in ethnomedicine to treat snakebite, inflammation, and diarrhea among others. The aim of this research is to isolate, and characterize potential potential phospholipase A2 (PLA2) inhibitors from the roots of C. nilotica. The plant material was collected, authenticated, and sequentially extracted using solvents of increasing polarity starting from n-hexane, ethyl acetate, and methanol. The extracts as reported in our previous work, were screened in vitro for their inhibitory activity against PLA2 enzyme from N. nigricollis venom using acidimetric assay. In line with the bio-activity guided isolation, methanol extract (being the most active) was subjected to chromatographic separation using silica gel and sephadex LH-20 which resulted in the isolation and characterization of scopoletin, and scopolin; the compounds were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 67.82 to 100.00 % and 65.76-93.15 %, respectively while the standard Antisnake Venom (ASV) had 74.96-85.04 % after 10 min incubation at 37 °C. The molecular docking of the compounds against PLA2 enzyme was performed using Auto Dock Vina while ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers; The findings indicated that both compounds were able to bind to the active site of PLA2 enzyme with high affinity (-6.5 to -6.2 kcal/mol) and they exhibited favorable drug-likeness and pharmacokinetic properties, and according to toxicity predictions, scopolin was found to be non-toxic (LD50 of 5000 mg/kg) while scopoletin has a slight chance of being toxic (LD50 of 3800 mg/kg). In conclusion, the findings of the research revealed that the roots of C. nilotica contains phytoconstituents with anti-PLA2 enzyme activity and thus, validates the ethnomedicinal claim of the use of the plant as herbal therapy against N. nigricollis envenomation.

16.
Nat Prod Res ; : 1-10, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646872

RESUMO

Parkinson's disease (PD) is characterised by the gradual demise of dopaminergic neurons. In recent years, there has been significant interest in herbal treatments. In this study, hesperetin nanoparticles (HTN) were developed and compared their anti-PD potential with hesperetin (HT) on rotenone induced PD rats. Molecular docking was also performed to evaluate the binding affinity of hesperetin on pathological protein, i.e. D2 dopamine receptors (DR2), using Auto Dock Vina tools. The results showed a higher binding relationship of HTN on dopamine receptors (-7.2 kcal/mol) compared to L-dopa (-6.4 kcal/mol), supporting their potential as drug candidates for PD therapy. HTN was effectively synthesised using the fabrication technique and characterised by zeta potential and SEM analysis. HTN had favourable characteristics, including a size of 249.8 ± 14.9 nm and a Z-potential of -32.9 mV. After being administered orally, HTN demonstrated a notable anti-Parkinsonian effects, indicated by the significant improvement in motor function as assessed by the rota rod test (p < .001***), pole test (p < .001***), stair test (p < .01**), wood walk test (p < .01**) and an increase in substantia nigra (SN) antioxidant levels, CAT (p < .001***), SOD (p < .001***), GSH (p < .01**). Additionally, HTN led to increased dopamine levels (p < .01**) and a decrease in the oxidant system, MDA levels (p < .01**). Furthermore, histopathological examination revealed decreased SN neuronal necrosis in diseased animals treated with HTN compared to those treated with HT in a rat model of Parkinson's disease. Therefore, HTN can be regarded as a viable platform for efficient therapy of PD.

17.
Biotechnol J ; 19(4): e2300343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622786

RESUMO

Due to the degeneracy of the genetic code, most amino acids are encoded by several codons. The choice among synonymous codons at the N-terminus of genes has a profound effect on protein expression in Escherichia coli. This is often explained by the different contributions of synonymous codons to mRNA secondary structure formation. Strong secondary structures at the 5'-end of mRNA interfere with ribosome binding and affect the process of translation initiation. In silico optimization of the gene 5'-end can significantly increase the level of protein expression; however, this method is not always effective due to the uncertainty of the exact mechanism by which synonymous substitutions affect expression; thus, it may produce nonoptimal variants as well as miss some of the best producers. In this paper, an alternative approach is proposed based on screening a partially randomized library of expression constructs comprising hundreds of selected synonymous variants. The effect of such substitutions was evaluated using the gene of interest fused to the reporter gene of the fluorescent protein with subsequent screening for the most promising candidates according to the reporter's signal intensity. The power of the approach is demonstrated by a significant increase in the prokaryotic expression of three proteins: canine cystatin C, human BCL2-associated athanogene 3 and human cardiac troponin I. This simple approach was suggested which may provide an efficient, easy, and inexpensive optimization method for poorly expressed proteins in bacteria.


Assuntos
Escherichia coli , Código Genético , Animais , Cães , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Códon/genética , Códon/metabolismo , RNA Mensageiro/genética
18.
Nat Prod Res ; : 1-11, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629156

RESUMO

A new cyclopeptide alkaloid, spinachristene A (1), along with two previously described, sanjoinenine (2) and oxyphylline C (3), were isolated from the fruits of Paliurus spina-christi Mill. All three metabolites are being isolated for the first time from the genus Paliurus. A model for the in silico binding affinity of compounds 1-3 to Dipeptidyl Peptidase IV (DPP4), which is related to type 2 diabetes (T2D), was developed. According to our model, compounds 1-3 were ranked in positions 9/12, 11/12 and 8/12, respectively and are predicted to exhibit significant affinity to DPP4, in the range of low 2-digit µΜ.

19.
Future Med Chem ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629440

RESUMO

Aim: The aim of this study was the synthesis of steroid compounds with heterocyclic rings and good anticancer properties. Materials & methods: The synthesis, in silico and in vitro anticancer testing of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives was performed. Results: All synthesized compounds have shown promising results for, antiproliferative activity, relative binding affinities for the ligand binding domains of estrogen receptors α, ß and androgen receptor, aromatase binding potential, and inhibition of AKR1C3 enzyme. Conclusion: 3-Benzyloxy (17E)-pycolinilidene derivative 9 showed the best antitumor potential against MDA-MB-231 cell line, an activity that can be explained by its moderate inhibition of AKR1C3. Molecular docking simulation indicates that it binds to AKR1C3 in a very similar orientation and geometry as steroidal inhibitor EM1404.

20.
Drug Discov Today ; : 103979, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608830

RESUMO

Drug discovery often begins with a new target. Protein-protein interactions (PPIs) are crucial to multitudinous cellular processes and offer a promising avenue for drug-target discovery. PPIs are characterized by multi-level complexity: at the protein level, interaction networks can be used to identify potential targets, whereas at the residue level, the details of the interactions of individual PPIs can be used to examine a target's druggability. Much great progress has been made in target discovery through multi-level PPI-related computational approaches, but these resources have not been fully discussed. Here, we systematically survey bioinformatics tools for identifying and assessing potential drug targets, examining their characteristics, limitations and applications. This work will aid the integration of the broader protein-to-network context with the analysis of detailed binding mechanisms to support the discovery of drug targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...